Cell cycle-dependent localization of the CDK2-cyclin E complex in Cajal (coiled) bodies.

نویسندگان

  • J Liu
  • M D Hebert
  • Y Ye
  • D J Templeton
  • H Kung
  • A G Matera
چکیده

We have found that CDK2 and cyclin E, but not cyclin A, accumulates within Cajal bodies (CBs) in a cell cycle-dependent fashion. In the absence of cyclin E, CDK2 is not enriched in the CB compartment, suggesting that the translocation of CDK2 to CBs is dependent on cyclin E. CDK2 and cyclin E could be recruited to CBs as a functional complex or CBs may serve as 'docking stations' for CDK2-cyclin E activation by CAKs during the G(1)/S transition. Notably, CDK7-cyclin H-Mat1 complexes are known to accumulate in CBs. Treatment of cells with inhibitors of either CDKs (olomoucine, 200 microM) or RNA polymerase I (actinomycin D, 0.05 microgram/ml), results in a striking reorganization of CDK2 and p80 coilin to the nucleolar periphery. Furthermore, we demonstrate that p80 coilin can be phosphorylated by purified CDK2-cyclin E complexes in vitro. Thus coilin and other CB proteins appear to be downstream targets of CDK2-cyclin E complex-mediated signaling pathways regulating cell cycle progression and controlling aspects of CB function. Possible roles for CDK2 and cyclin E in the well-documented association of CBs, histone gene clusters and RNA 3' end processing factors are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional interactions between herpesvirus oncoprotein MEQ and cell cycle regulator CDK2.

Marek's disease virus, an avian alphaherpesvirus, has been used as an excellent model to study herpesvirus oncogenesis. One of its potential oncogenes, MEQ, has been demonstrated to transform a rodent fibroblast cell line, Rat-2, in vitro by inducing morphological transformation and anchorage- and serum-independent growth and by protecting cells from apoptosis induced by tumor necrosis factor a...

متن کامل

The cyclin E/Cdk2 substrate and Cajal body component p220(NPAT) activates histone transcription through a novel LisH-like domain.

p220(NPAT) is a substrate of cyclin E/Cdk2 that localizes in nuclear organelles called Cajal bodies in a cell cycle-regulated manner. In normal diploid fibroblasts, p220 is concentrated in two Cajal bodies tethered to histone gene clusters at chromosome 6p21 during G(1), S, and G(2) phases and two additional Cajal bodies tethered to histone genes at 1q21 during S, and G(2) phases. Overexpressio...

متن کامل

Indole-3-carbinol (I3C) inhibits cyclin-dependent kinase-2 function in human breast cancer cells by regulating the size distribution, associated cyclin E forms, and subcellular localization of the CDK2 protein complex.

Indole-3-carbinol (I3C), a dietary compound found in cruciferous vegetables, induces a robust inhibition of CDK2 specific kinase activity as part of a G1 cell cycle arrest of human breast cancer cells. Treatment with I3C causes a significant shift in the size distribution of the CDK2 protein complex from an enzymatically active 90 kDa complex to a larger 200 kDa complex with significantly reduc...

متن کامل

HiNF-P directly links the cyclin E/CDK2/p220NPAT pathway to histone H4 gene regulation at the G1/S phase cell cycle transition.

Genome replication in eukaryotic cells necessitates the stringent coupling of histone biosynthesis with the onset of DNA replication at the G1/S phase transition. A fundamental question is the mechanism that links the restriction (R) point late in G1 with histone gene expression at the onset of S phase. Here we demonstrate that HiNF-P, a transcriptional regulator of replication-dependent histon...

متن کامل

Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis.

Here, we show that CDK2, an S-phase cyclin-dependent kinase, is a novel target for Akt during cell cycle progression and apoptosis. Akt phosphorylates CDK2 at threonine 39 residue both in vitro and in vivo. Although CDK2 threonine 39 phosphorylation mediated by Akt enhances cyclin-A binding, it is dispensable for its basal binding and the kinase activity. In addition, for the first time, we rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 113 ( Pt 9)  شماره 

صفحات  -

تاریخ انتشار 2000